Chapitre 5

Les fonctions usuelles

Sommaire		
1	Fon	ctions circulaires réciproques
	1.1	Fonction arcsinus
	1.2	Fonction arccosinus
	1.3	Fonction arctangente
	Fon	ctions hyperboliques
	2.1	Fonctions sinus hyperbolique et cosinus hyperbolique
	2.2	La fonction tangente hyperbolique
	2.3	Formulaire de trigonométrie hyperbolique
	Fonctions hyperboliques réciproques	
	3.1	La fonction argument sinus hyperbolique
	3.2	La fonction argument cosinus hyperbolique
	3.3	La fonction argument tangente hyperbolique
	3.4	Expressions logarithmiques

1 Fonctions circulaires réciproques

1.1 Fonction arcsinus

- \checkmark La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- $\sqrt{}$ Sa restriction sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ est une fonction continue et strictement croissante et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par

$$\arcsin: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $\sqrt{\text{Ainsi la fonction arcsin est continue et strictement croissante sur } [-1,1].$ De plus, on a

$$y = \sin(x), \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Longleftrightarrow x = \arcsin(y), \ y \in [-1, 1]$$

Autrement dit

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \quad \arcsin(\sin x) = x$$

 $\forall y \in [-1, 1], \quad \sin(\arcsin y) = y$

Attention, cela est valable seulement pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Par exemple,

$$\arcsin(\sin \pi) = \arcsin(0) = 0 \neq \pi.$$

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur $\left]-1,1\right[$ et on a, $\mathbb S$

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

En effet, si on pose $f(x) = \sin(x)$ alors $\forall x \in]-1,1[$

$$(\arcsin)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

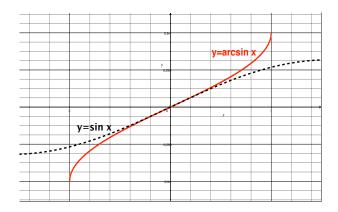
or on sait que

$$\cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x))$$

comme la fonction $x \longmapsto \cos(x)$ est positive sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ alors

$$\implies \cos(\arcsin(x)) = \sqrt{1 - \sin^2(\arcsin(x))} = \sqrt{1 - x^2}$$

✓ Le graphe de Arcsinus s'obtient par symétrie par rapport à la première bissectrice de la courbe de la restriction à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ de la fonction sinus



1.2 Fonction arccosinus

- \checkmark La fonction cosinus est définie et continue sur \mathbb{R} , paire et périodique de période 2π .
- ✓ Sa restriction sur $[0,\pi]$ est une fonction Scontinue et strictement décroissante et prend ses valeurs sur [-1,1].
- ✓ Donc la fonction $\cos:[0,\pi] \longrightarrow [-1,1]$ est bijective. On peut donc définir sa fonction réciproque appelée Arccosinus et notée

$$\arccos: [-1,1] \longrightarrow [0,\pi]$$

 \checkmark Ainsi la fonction arccos est continue et strictement décroissante sur [-1,1].

De plus, on a $\mathbb S$

$$y = \cos(x), \ x \in [0, \pi] \iff x = \arccos(y), \ y \in [-1, 1]$$

Autrement dit

$$\forall x \in [0, \pi],$$
 $\operatorname{arccos}(\cos x) = x$
 $\forall y \in [-1, 1],$ $\operatorname{cos}(\operatorname{arccos} y) = y$

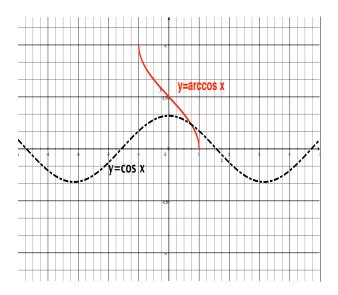
Attention, cela est valable seulement pour tout $x \in [0, \pi]$. Par exemple,

$$\arccos(\cos 2\pi) = \arccos(1) = 0 \neq 2\pi.$$

✓ Comme la fonction f(x) = cos(x) est dérivable sur $[0, \pi]$ et sa dérivée ne s'annulle pas sur $[0, \pi[$ alors sa fonction réciproque $f^{-1}(x) = \arccos(x)$ est dérivable sur $[0, \pi]$ et on a,

$$(\arccos)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

 \checkmark Le graphe de Arccosinus s'obtient par symétrie par rapport à la première bissectrice de la courbe de la restriction à $[0,\pi]$ de la fonction cosinus



1.3 Fonction arctangente

 \checkmark La fonction tangente est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Elle est continue, impaire et π -périodique.

✓ Sa restriction sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ est une fonction Scontinue et strictement croissante et prend ses valeurs sur \mathbb{R} .

✓ Donc la fonction $\tan:]-\frac{\pi}{2},\frac{\pi}{2}[\longrightarrow\mathbb{R}$ est bijective. On peut donc définir sa fonction réciproque appelée Arctangente et notée

$$\arctan: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 \checkmark Ainsi la fonction \arctan est continue et strictement croissante sur \mathbb{R} .

De plus, on a

$$y = \tan(x), \ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff x = \arctan(y), \ y \in \mathbb{R}$$

D'où pour tout $y \in \mathbb{R}$

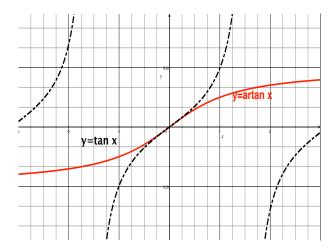
$$\tan(\arctan y) = y.$$

et pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$,

$$\arctan(\tan x) = x.$$

✓ Comme la fonction $f(x) = \tan(x)$ est dérivable sur $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ et sa dérivée ne s'annulle pas sur $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ alors sa fonction réciproque $f^{-1}(x) = \arctan(x)$ est dérivables sur $\mathbb R$ et on a pour tout $x \in \mathbb R$,

$$(\arctan)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$



Propriété 3.

$$\begin{aligned} &\forall x \in [-1,1]; \quad \arccos(x) + \arccos(-x) = \pi \\ &\forall x \in [-1,1]; \quad \arcsin(x) + \arccos(x) = \frac{\pi}{2} \\ &\forall x \in]0, +\infty[; \quad \arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2} \\ &\forall x \in]-\infty, 0[; \quad \arctan(x) + \arctan(\frac{1}{x}) = \frac{-\pi}{2} \end{aligned}$$

 $D\'{e}monstration.$. On montre la troisième propriété, les autres se montrent de la même manière. On pose

$$f(x) = \arctan(x) + \arctan(\frac{1}{x})$$

On a f continue et dérivable sur $]0, +\infty[$ de plus

$$f'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

donc pour tout $x \in]0, +\infty[$, f(x) = c, en faisant tendre x vers $+\infty$, on trouve

$$c = \lim_{x \to +\infty} f(x) = \frac{\pi}{2}$$

2 Fonctions hyperboliques

2.1 Fonctions sinus hyperbolique et cosinus hyperbolique

Pour tout $x \in \mathbb{R}$, on appelle sinus hyperbolique de x le réel noté $\sinh x$ et défini par

$$\sinh x = \frac{e^x - e^{-x}}{2}.$$

On appelle cosinus hyperbolique de x le réel noté $\cosh x$ et défini par

$$\cosh x = \frac{e^x + e^{-x}}{2}.$$

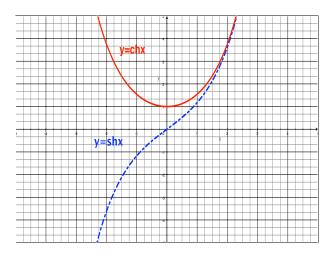
– La fonction sinh est impaire et la fonction cosh est paire. Elles sont liées par les relations : $\forall x \in \mathbb{R}$

$$ch(x) + sh(x) = e^x$$
 et $ch(x) - sh(x) = e^{-x}$
 $\cosh^2 x - \sinh^2 x = 1$

- Les fonctions cosh et sinh sont dérivables sur $\mathbb R$ avec, pour tout $x \in \mathbb R$

$$\cosh'(x) = \sinh(x), \quad \sinh'(x) = \cosh(x)$$

- La fonction \sinh est impaire, strictement croissante $\mathrm{sur}\ \mathbb{R}$, strictement négative $\mathrm{sur}\ \mathbb{R}_{+}^{*}$ et s'annule en 0.
- La fonction \cosh est paire, strictement positive sur \mathbb{R} , strictement décroissante sur \mathbb{R}_{+}^{*} et strictement croissante sur \mathbb{R}_{+}^{*} . De plus, $\forall x \in \mathbb{R}, chx \geq 1$.



2.2 La fonction tangente hyperbolique

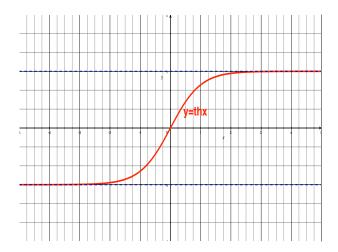
On appelle tangente hyperbolique de x le réel noté $\tanh x$ ou thx et défini par

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

La fonction th est impaire, continue et dérivable sur $\mathbb R$ de plus on a, $\mathbb S$

$$th'(x) = 1 - th^2(x) = \frac{1}{ch^2(x)}; \quad \forall x \in \mathbb{R}$$

Par conséquent, th est strictement croissante sur $\mathbb R$ et s'annule en 0. Elle admet en $\pm \infty$ une asymptote horizontale d'équation $y=\pm 1$.



2.3 Formulaire de trigonométrie hyperbolique

On a pour tout $x, y \in \mathbb{R}$,

$$\begin{aligned} &\sinh(x+y) &= & \sinh x \cosh y + \cos x \sinh y, \\ &\sinh(x-y) &= & \sinh x \cosh y - \cosh x \sinh y, \\ &\cosh(x+y) &= & \cosh x \cosh y + \sinh x \sinh y, \\ &\cosh(x-y) &= & \cosh x \cosh y - \sinh x \sinh y, \\ &\tanh(x+y) &= & \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}, \\ &\tanh(x-y) &= & \frac{\tanh x - \tanh y}{1 - \tanh x \tanh y}. \end{aligned}$$

On peut déduire que

$$\cosh(2x) = \cosh^2 x + \sinh^2 x = 1 + 2\sinh^2 x = 2\cosh^2 x - 1,$$

 $\sinh(2x) = 2\cosh x \sinh x.$

Ainsi

$$\cosh^2 x = \frac{1 + \cosh(2x)}{2}$$
 et $\sinh^2 x = \frac{\cosh(2x) - 1}{2}$.

De même,

$$\tanh(2x) = \frac{2\tanh x}{1 + \tanh^2 x}.$$

Démonstration.. On va montrer la première formule. En effet, on a par définition :

$$\sinh x \cosh y = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) = \frac{e^{x+y} - e^{-(x+y)} + e^{x-y} - e^{y-x}}{4}$$

de même

$$\cosh x \sinh y = \frac{e^{x+y} - e^{-(x+y)} - e^{x-y} + e^{y-x}}{4}$$

En sommant, on obtient

$$\sinh x \cosh y + \cosh x \sinh y = \frac{2e^{x+y} - 2e^{-(x+y)}}{4} = \sinh(x+y)$$

Les formules ci-dessous, dites formules de changement de variables, sont trés utiles dans le calcul intégral. Si on pose $t = \tanh \frac{x}{2}$, on a

$$tanh x = \frac{2t}{1+t^2}, \ sinh x = \frac{2t}{1-t^2} \quad \text{et} \quad \cosh x = \frac{1+t^2}{1-t^2}.$$

3 Fonctions hyperboliques réciproques

3.1 La fonction argument sinus hyperbolique

✓ La fonction sinh est une fonction continue et strictement croissante donc réalise une bijection de \mathbb{R} vers \mathbb{R} . Sa bijection réciproque est appelée argument sinus hyperbolique et notée $\arg \sinh$. On a donc

$$x = \operatorname{argsinh}(y) \Longleftrightarrow y = \sinh(x), \forall x, y \in \mathbb{R}$$

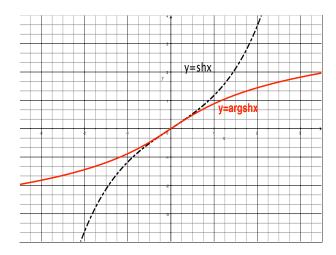
✓ La fonction \sinh est dérivable sur $\mathbb R$ et sa dérivée ne s'annulle pas sur $\mathbb R$ alors sa fonction réciproque $\arg \sinh x$ est aussi dérivable sur $\mathbb R$ et on a

$$(\arg\sinh)'(x) = \frac{1}{\sqrt{1+x^2}}, \quad \forall x \in \mathbb{R}$$

En effet, si on note $f(x) = \sinh(x)$ alors

$$(\arg\sinh)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cosh(\arg\sinh x)}$$

or $\cosh^2(\arg\sinh x) - \sinh^2(\arg\sinh x) = 1 \Longrightarrow \cosh(\arg\sinh x) = \sqrt{1+x^2}$



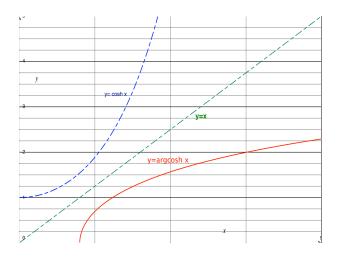
3.2 La fonction argument cosinus hyperbolique

✓ La fonction \cosh est une fonction continue et strictement croissante donc réalise une bijection de $[0, +\infty[$ vers $[1, +\infty[$. Sa bijection réciproque est appelée argument cosinus hyperbolique et notée $\arg\cosh$. On a donc

$$x = \operatorname{arg} \cosh(y), \ \forall y \in [1, +\infty[\iff y = \cosh(x), \forall x \in [0, +\infty[$$

✓ La fonction \cosh est dérivable $\sup [0, +\infty[$ et sa dérivée ne s'annulle pas $\sup]0, +\infty[$; alors sa fonction réciproque $\arg \cosh x$ est dérivable $\sup]1, +\infty[$ et on a

$$(\operatorname{arg\,cosh})'(x) = \frac{1}{\sqrt{x^2 - 1}}, \quad \forall x \in]1, +\infty[$$



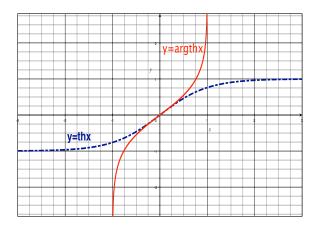
3.3 La fonction argument tangente hyperbolique

✓ La fonction tanh est une fonction continue et strictement croissante donc réalise une bijection de \mathbb{R} vers]-1,1[. Sa bijection réciproque, appelée argument tangente hyperbolique et notée arg tanh. On a donc

$$x = \operatorname{argtanh}(y), \ \forall y \in]-1, 1[\iff y = \operatorname{tanh}(x), \forall x \in \mathbb{R}$$

✓ La fonction \tanh est dérivable sur $\mathbb R$ et sa dérivée ne s'annulle pas sur $\mathbb R$ alors sa fonction réciproque $\arg \tanh$ est dérivable sur]-1,1[et on a

$$(\arg \tanh)'(x) = \frac{1}{1 - x^2}, \quad \forall x \in]-1,1[$$



3.4 Expressions logarithmiques

Les fonctions hyperboliques réciproques peuvent s'exprimer à l'aide d'expressions logarithmiques. Plus précisément, nous avons :

Pour tout $x \in \mathbb{R}$,

$$\arg \sinh x = \ln(x + \sqrt{1 + x^2}).$$

Pour tout $x \in [1, +\infty[$,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

Pour tout $x \in]-1,1[$,

$$\operatorname{arg} \tanh x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Vérifions par exemple la deuxième égalité :

Soit $x \in [1, +\infty[$. Posons $t = \operatorname{arg} \cosh x$. On a $x = \cosh t$ et $t \ge 0$. Il en résulte que $\sinh t = \sqrt{x^2 - 1}$. Par conséquent,

$$e^t = \cosh t + \sinh t = x + \sqrt{x^2 - 1}$$
 et $t = \ln(x + \sqrt{x^2 - 1})$.